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Abstract 

Venom has a very complex and exclusive nature which has been introduced by recent 
advances in omics technologists. These methods have revealed a new insight into venom studies 
as venomics. Envenoming by venomous animals is a global concern due to the distribution of 
important medical species around the world. Treatment of envenomed victims is dependent on 
accurate and fast identifi cation of animal species with diff erent detection methods. In recent 
years, new methods have been introduced based on molecular and immunological techniques. 
Precise diagnosis of species of venomous animals is an essential factor for treatment with specifi c 
antivenoms. Venomics and antivenomics data sets help in the selection of specifi c antivenoms or 
production of novel antivenoms with greater effi  cacies.

Introduction
In the course of evolution, multi-gene families have arisen 

from sequential duplication of genes that are involved in the 
production of physiological proteins. Then duplicated copies 
of old genes in the venom glands can produce proteins with a 
new function as toxins [1]. The high rate of non-synonymous 
mutations in the multi-gene families and low repeat genes of 
toxins demonstrate the pressure of selection on the coding 
sequences which result in a diversity of gene sequences and 
venom functions [2,3]. Both of the evolutionary mechanisms 
including natural selection and genetic drift cooperate for 
venom evolution and for the success of venomous animals 
in the interactions with other animals over the years. 
Components with a high abundance are experiencing powerful 
forces of positive selection and strong drift forces. In contrast, 
weak forces of selective constraint lead to replacement of 

deleterious mutations in the gene sequences [4]. Despite 
the increasing venom efϐicacy for surviving through venom 
evolution, there are many non-venomous animals that have 
lost their venom system in the evolutionary process due to the 
optimization of costs and beneϐits [5]. 

Generally, physiological elements and venom are present 
in a cycle whose diversities are dependent on each other 
and their coevolution is the cause of extensive diversity of 
venom contents. Therefore, venoms have been evolved into 
a biological substance with more molecular diversity, activity, 
and speciϐicity which can target those physiological elements. 
These results are evidence of a connection between humans 
and venom not only as a predator and prey interaction but 
also beyond this interaction [5]. Interestingly, the well-
established complex nature of venoms, especially with the 
help of recent advances in venomics studies, draws the 
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attention of researchers even more than before to the venom 
and venomous animals. In this review, we will discuss about 
role of venomics and antivenomics dataset in development of 
speciϐic antivenoms for treatment.

Venomics 

In recent years, the studies of animal venoms thanks to the 
advances in highly sensitive and high-throughput techniques 
such as genomics, transcriptomics, proteomics, and 
metabolomics have introduced large- scale data from venoms 
known as venomics, and opened up new opportunities for 
biological and clinical venom applications [6-12]. Before 
improvements of these technologies, venom studies mostly 
focused on a single toxin or component of venoms and 
investigated their structure and function. Advances in new 
methods such as reverse-phase high-performance liquid 
chromatography (RP-HPLC) and mass spectrometry (MS) 
help us identify various animal venoms and their content. 
Subsequently, the breadth of our information assists in 
phylogenetic studies and following the trail of the evolutionary 
process of the venoms as the animal venom is modulated by 
natural pressures such as genetic mutations, genetic drift, and 
natural selection for optimal adaptation [13]. In addition to 
natural pressures for venom diversity and venom adaptation 
for a speciϐic function, the composition and abundance of 
venom components are inϐluenced by local environmental 
conditions, geographical and genetic separation factors 
causing intraspeciϐic diversity in animal venom peptides or 
proteins for adaptation to their environment [14,15]. Venom 
development is an important event which is the reason for 
survival of venomous animals for many years. Venomics 
data can provide information for phylogenic studies. The 
shared types of peptides or proteins provide information 
from recruitment patterns of animal venoms such that the 
common types of peptides or proteins may be recruited into 
the proteome before lineage-7splitting of considered species 
during the evolution [16,17].

For instance, venom proteome information of about 132 
snake species which had been investigated in the last ten 
years was collected for comparative data analysis of snake 
venom. In addition to four dominant and six secondary protein 
classes in these species, many differences were identiϐied in 
the venom composition and abundance of components [13]. 
Snake venom with a complex mixture of several enzymes, 
proteins, polypeptides, and many other components is a 
rich source of potent biologically active molecules such as 
toxins with high speciϐicity, efϐicacy, and fast performance 
in targeting; these are ϐirst beneϐicial for defending and 
hunting, while also conferring many medical beneϐits. There 
are approximately 375 venomous snake species worldwide 
and their venom is an excellent source of novel toxins. The 
Snake Venom DataBase (SVDB) contains all information on 
venomous snakes, their venom compositions, and function 
(https://www.snakevenomdb.org/). 

In addition to snakes, many studies have focused on 
other dangerous and venomous animals such as cone snails, 
scorpions, and spiders. From the beginning of venomics 
analysis, different species of scorpions have been considered 
by researchers. The genome, transcriptome, and proteome 
analysis of different species of scorpions demonstrates the 
molecular diversity of their genes and proteins including 
typical and atypical protein families where a toxin family 
is a major group of proteins in their venom such as sodium 
and potassium channel toxins. Also, venomics analysis has 
introduced many novel toxins [18-22]. Interestingly, in 
addition to the proteome proϐile of venom, the presence of 
several chemical elements such as sodium, potassium, calcium, 
copper, zinc, and manganese with various concentrations in 
their venom assists in representing the way venoms function 
and their pharmacological applications [23]. Cone snails are 
other important venomous animals with about 800 species 
with each producing a unique proteome proϐile with over 
1000 components including various cysteine-rich peptides 
or conopeptides. Venomics data of cone snails can contribute 
to the discovery of venom composition and characterization 
of its components as well as increasing the number of novel 
peptides. They also accelerate demystifying the cone snails 
venom complexity which can help in the application of toxins 
[24]. For example, differences in the quality and quantity 
of venom in various specimens from different sections of 
venom duct suggest that different sections of venom duct are 
specialized for production of speciϐic conotoxins. as Also, the 
presence of post-translational modiϐied peptides for enhanced 
diversity and the presence of alternative cleavage sites in the 
sequence of components [25], the regional variations between 
specimens from the same species in the same geographical 
region [26-28], the complexity depending on the breadth 
of dietary [29] as well as differences given the stimulation 
types including predatory or defensive venom are of interest 
[30,31]. Many novel components with pharmacological 
features have been introduced in spider’s venom through 
ongoing venomics data. Venomics data indicate that many 
toxins in spider’s venom are cysteine-rich peptides with 3-9 
kDa molecular weight [32], and the Inhibitor Cysteine Knot 
(ICK) motif is the most structural motif of these toxins among 
many various species of spiders. These results conϐirm the 
conservation of these classes of toxins among them [33-35]. 
Interestingly, the spider venom changes during its lifetime 
and development; these changes can be a result of various 
predation-prey interactions in different periods of life such as 
demand of mate for males with these changes being examples 
of constant ontogenetic changes [36]. These are examples of 
venom diversity and today there is much evidence of venom 
variations from various animals by venomics studies.

Recently, venomics data are improving by applying new 
methods such as a rapid, efϐicient, and easy methods through 
on-chip technology [37] as well as new insights such as 
using proteomics technology for studying the composition 
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techniques have been used by researchers, such as gel 
immunodiffusion, immunoϐluorescence, hemagglutination, 
immunoelectrophoresis, radioimmunoassay (RIA), enzyme-
linked immunosorbent assay (ELISA/EIA), and optical 
immunoassay [43,41]. Among these bio-detection systems 
based on immunological reactions, RIA and ELISA are more 
common due to their sufϐicient speciϐicity and sensitivity. The 
ELISA technique provides more beneϐits such as inexpensive, 
uncomplicated, stable reagents, different samples for 
detection including blood and other biological ϐluids [44]. 
From many years ago, microtiter plates coated with speciϐic 
venom antibodies or venom antigens have been used in direct 
and indirect ELISA respectively [41] such that the detection 
based on ELISA has been established around the world even 
as commercial kits for common snakes in susceptible regions 
such as Australia [45,46], Vietnam [47], and Egypt [48]. 
Another rapid, speciϐic and sensitive snake venom detection 
kit has been utilized based on optical immunoassay (OIA) 
for four important snakes of South Vietnam. In this method, 
the physical changes in the thickness of molecular thin films 
caused by the speciϐic binding of antigen and antibody are 
visible through light reϐlectance from gold into purple or blue 
color which depends on the thickness of the optical layer or 
the quantity of antigen-antibody complex formation [49]. 
In recent years, many efforts have been made to enhance 
the accuracy, sensitivity, speciϐicity, and to reduce the test 
response time, test costs, and portability based on the antigen-
antibody complex for timely detection of venomous animal 
and provision of health care services. These services include 
detection based on surface plasmon resonance spectroscopy 
or detection based on chip with a highly sensitive transducer 
and quartz crystal microbalance (QCM), which are integrated 
by biosensors for venom detection [50,51]. 

The application of molecular techniques for identiϐication 
of animal venoms was introduced by employing polymerase 
chain reaction (PCR) in 2001. Due to the lack of sufϐicient 
information about gene sequences, the cobrotoxin-encoding 
gene was selected which could distinguish monocellate cobra 
from other common snakes in Thailand  [42]. Then, in 2005 
DNA barcoding method was employed for snake species 
recognition from dried snake venoms. In this approach, 
DNA extraction and sequencing of a mitochondrial 12S gene 
supported the identiϐication of snake species via comparing 
sequences with the GenBank database and was helpful in 
building the DNA barcodes of that species which can be used 
for matching the barcode sequences from unknown specimens 
[52]. DNA barcodes of other mitochondrial genes such as COI 
and Cytb genes from 16 snake species were constructed in 
Thailand. The results showed that COI gene is better for DNA 
barcoding and for recognition of these species due to more 
intra- and interspeciϐic sequence divergences of this gene. 
DNA barcodes and a novel species-speciϐic multiplex PCR 
assay were used for accurate and rapid identiϐication. Also, 
speciϐic anti-venoms against these species were produced 

of protein cargo of extracellular vesicles [38]. Evolution of 
our information from venomous animals and their venom 
in recent years with different approaches ϐirst provides a 
comprehensive catalog of venom composition and venom 
diversity for their clinical and pharmacological applications. 
It also helps us in the management of health care services for 
venomous victims as they need their special remedy according 
to each species of venomous animals. Interestingly, although 
the venom composition is similar between many species and 
most of the components belong to the main functional protein 
classes, they have various amino acid sequences and epitopes 
in their structures which may be the cause of the need for 
speciϐic antiserums against each species [39]. 

One of the causes of morbidity and mortality worldwide is 
animal bites especially in Africa and South-East Asia. A large 
number of envenoming is associated with snake bites such that 
each year more than 5 million people are bitten, 2.4 million 
people are envenomed and 94,000-125,000 are dead by 
snakes (https://www.who.int/en/news-room/fact-sheets/
detail/animal-bites#). Death or other health consequences 
of envenomed people highlight the need for providing timely 
health care services. 

Envenoming is a serious cause of morbidity and mortality 
in various regions of the world especially in tropical and 
subtropical regions particularly snakebites which has 
been introduced as a neglected tropical disease by World 
Health Organization (WHO). A common complication of 
envenoming by various species of snakes is neurotoxicity. 
Acute neuromuscular paralysis is the major manifestation of 
neurotoxicity and is the cause of severe health consequences 
of snakebites [40]. The neurotoxicity by blockade of 
neurotransmission, as well as disruption of blood coagulation 
and triggering immune system type 2 are prevalent and well-
known consequences of envenomation of numerous species 
of animals as introduced by toxicology studies in humans [5]. 
Since envenomation by venomous animals is a human health 
concern, recent advances in the detection of venomous animal 
species based on antigen and antibody interaction [41] as 
well as molecular detection [42] for common species in the 
particular regions of the world facilitate the treatment of 
envenomed patients through speciϐic antivenoms. 

Diagnosis of envenomation 

Diagnosis of envenomation is based on clinical and 
laboratory factors. In addition to general laboratory diagnosis 
by blood parameters, identiϐication of venom-speciϐic antigens 
or antibodies against these antigens by examining the blood 
or other body ϐluids for determining the animal species and 
effective antivenoms has played an important role in the 
treatment of envenomed victims. Therefore, for the treatment 
of envenomed victims, there are two important factors 
including accurate diagnosis of animal species and speciϐic 
antivenom for the treatment. Methods based on immunological 
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for protection of envenomed victims [53]. In the ϐirst 
cohort study, snake species identiϐication based on the PCR 
technique was performed with a clinical approach in southern 
Nepal by nearly 749 snakebite patients with snake species in 
25.9% cases being identiϐied. Interestingly, the majority of 
envenomed patients were bitten by non-venomous snake’s 
species [54]. Another method called peptide barcoding was 
introduced and tested for scorpions. In this approach, the 
extracted venom of scorpions through a simple protocol 
was used for identiϐication of species by MALDI-TOF mass 
ϐingerprints database of venom barcoding [55].

Antivenomics

Selection of and treatment with speciϐic anti-venoms 
constitute an important step in the treatment of envenomed 
victims. Choosing speciϐic anti-venoms is a decision made by 
clinicians which depends on the speciϐic species of venomous 
animals. Antivenoms are obtained from immunized animals; 
use nonspeciϐic anti-venoms, due to inaccurate recognition of 
venomous animal species or inaccessibility of monospeciϐic 
antivenom, triggers severe immune responses with various 
side effects even the probability of mortality in some 
envenomed victims [41].

Antivenomics is a proteomics-based method which 
provides immunological cross-reactivity proϐile of venom 
toxins which is exactly recognized by antibodies and toxins 
without or with poor recognition by the antivenom antibodies. 
To investigate the efϐicacy of antivenoms, we need information 
from both neutralization effects of antivenom in the body and 
antivenomics analysis data [56]. Based on advances of the 
antivenomics methodology, there are three generations of 
antivenomics methods. The ϐirst generation of antivenomics 
is an approach for identifying both immunoprecipitated 
antigens and free antigens of venom which are not bound 
to antibodies by RP-HPLC technique. The second generation 
ϐirst identiϐies the bound and unbound venom antigens and 
provides a quantitative comparison with the whole venom 
chromatogram. Finally, the quality and quantity of antivenom 
with a range of venom-antivenom concentrations are analyzed 
to determine a certain amount of antivenom for neutralization 
of a speciϐic amount of the venom in the third generation [57].

For overcoming the deϐiciencies of the current antivenoms 
for treatment of envenomed victims, antivenomics creates the 
opportunity through we can investigate different anivenoms 
against various venoms. This method reveals the satisfactory 
function or insufϐicient neutralization of the current 
antivenoms. For some species for which there is no speciϐic 
antivenom, hetero-speciϐic and polyvalent antivenoms 
have been tested for immunological cross-reactivity by 
antivenomics analysis. The neutralization of important toxins 
with dangerous effects depends on the venom composition 
of species which determines whether the antivenom is 
appropriate for the treatment of envenomed victims [58] 

or not [59,60]. Although the gold standard for antivenom 
production has been their neutralization efϐicacy for venom 
lethality effects, according to the venom composition and its 
pathophysiologic effects, neutralization of other toxins with 
various effects by antivenoms should also be considered 
[61]. For example, the venom of Crotalus durissus subspecies 
in Brazil contains crotoxin which is the main toxin with 
neurotoxicity and myotoxicity effects plus crotamine with 
lower toxicity and induction of skeletal muscle spasms. 
Crotalic antivenom failed to recognize or neutralize crotamine; 
probably the venom injected to the animal for the antivenom 
production was devoid of crotamine. Alternatively, it could 
be attributed to the lower molecular weight of crotamine for 
stimulating the animal immune system. Therefore, we can 
apply the venomics and antivenomics analysis for optimizing 
antivenoms [62]. 

In addition to the investigation of the current antivenoms, 
there are reports of various insights into the production of 
novel antivenoms such as small-molecule inhibitors against 
components with enzymatic activity, aptamers based on 
peptide or oligonucleotide and recombinant antibodies 
against components with or without enzymatic activity. Thus, 
antivenom development depends on venom composition and 
complexity especially toxins and their function [63,64]. 

Conclusion
Venom is the cause of mortality and morbidity of humans in 

the human and venomous animal interactions. In most cases, 
venom detection is based on the evidence presented by the 
envenomed patient or reports of a herpetologist. Therefore, 
there is an essential requirement for venom detection with 
more functional properties. In recent years, there have 
been many efforts for accurate detection and treatment 
with speciϐic antivenoms based on molecular approaches. 
According to the advancements in the venom studies, there 
will be new opportunities in the treatment of envenomed 
victims and many other diseases in the future.
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