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Introduction
The problem of singlet oxygen is crucial for biomedical 

physics, clinical biochemistry, and molecular medicine, since 
singlet oxygen is a highly reactive low-molecular-weight 
agent that damages membranes [1], cytoplasmic proteins [2], 
nucleic acids [3] (or mediating the effects of both organic [4] 
and inorganic [5] toxic agents on them). Typically, membrane 
lipids that protect against singlet oxygen effects during photo-
induced damage [6,7] are not able to eliminate the effects of its 
volumetric exposure when using other, more physiologically 
active sourced of the singlet oxygen generation, especially 
non-photobiological agents capable of penetrating deep into 
the cell.

In particular, it is known that singlet oxygen is formed under 
the microwave radiation and in a microwave discharge [8,9], 
obtained in such experimentally accessible sources as chemical 
(for example, oxygen-iodine [10]) lasers, gas-discharge lamps 
[11], radio frequency or microwave plasmatrons [12]. It 
can be assumed that the effect of such sources on biological 
tissues, not associated with the photochemical processes, is 
determined by the centimeter or decimeter waves, resulting 
in nonspeciϐic oxidative stress at the cellular level. There 
are medically relevant reports of oxidative stress caused by 

microwave frequencies typical of microwave ovens, cellular 
communications, and wireless networks based on the IEEE 
802.11 (Wi-Fi) communication standard [13]. The phenomena 
induced by these frequencies are histochemically signiϐicant 
and can be diagnosed microscopically as histopathological 
changes [14]. Accordingly, there is a need for designs that make 
it possible to simultaneously effect the cells or tissues with 
the centimeter / decimeter frequencies and microscopically 
observe the changes induced along with mapping their lability 
to the oxidative stress. The development of such a system 
would make it possible not only to observe the above changes, 
but also to study the effectiveness of the potential protectors, 
such as selenium and L-carnitine [15,16]. In this paper we 
present the design of an installation capable of performing 
these functions.

Installation design and analysis capabilities 

The proposed version of the installation design is based on 
the previously published concept of analyzing the ROS levels 
in tissues during irradiation with the chemical calibration 
based on the background measurements in the environment 
near the irradiation source [17,18]. This is necessary because 
determining individual reactive oxygen species is challenging 
due to their co-localization in the cell under nonspeciϐic 
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oxidative stress and the shared mechanisms of their effects on 
the cell (in the case of microwave irradiation this is manifested 
in the unity of action of ozone, hydrogen peroxide and other 
ROS and the direct effects of microwave radiation [19,20]). 
The prototype apparatus assembled is shown in Figure 1, 
while a chemometric system for monitoring ROS production 
in the environment, which is the subject of a separate work, 
is not shown.

The proposed design consists of a column in which 
a microscopic tube is placed, moved using the stepper 
motors (equipped with an opaque illuminator and an Ocean 
Optics ϐiber optic spectroϐluorimeter mounted on a turret 
attachment) and on which an optical detection unit, a pulsed 
power supply, and a magnetron module with a pre-exposure 
camera are located. In the latter a sample is irradiated and then 
observed. The installation also includes an exposure control 
panel and a computer with software for data acquisition and 
processing. In the original version, the system operates at 
the relevant frequency of 2.45 GHz. Power and pulse modes 
are controlled by a panel unit, functionally similar to that of a 
microwave oven.

Theoretically, based on the medical physics data, it may also 
be appropriate to perform measurements at other frequencies 
(for example, 900 MHz, 930 MHz, and 1.8 GHz), at which the 
ROS generation and oxidative stress phenomena are recorded 
[21-23] (while at 1.9 GHz these data are not conϐirmed [24]). 
For this purpose, the installation provides the possibility to 
replace the magnetron and the exposure control panel. A 
noise meter was selected for this wavelength range, intended 
for electromagnetic noise protection measurements, since 
it is known that with an increase in the ROS concentrations 
and the DNA damage induced by them [25], electromagnetic 
noise can inhibit this fragmentation, leading to decreased ROS 
concentration [26].

The measurements are carried out in conditions protected 
from light (the gateway is closed at the time of exposure) in 
order to exclude non-thermal effects not envisaged by many 
authors (but also acting on the tissues) and to indicate only 
the response to the microwave exposure, in accordance 
with the work [27]. It should be noted that the authors were 
unable to completely standardize the microwave radiation 
by the wavelength, since at microwave frequencies, the 
magnetron operates across a range of 2.3 to 2.7 GHz and it 
is almost impossible to level out the parasitic modulation of 
the magnetron within its operational voltage range (3.5 - 4 
kV). Otherwise, this installation is standardized to the levels 
where, according to literature, ϐluctuations in readings do 
not alter the nature of observed physiological effects. The 
design incorporates double shielding, ensuring complete 
safety for the operator. This installation can also implement 
ϐluorescence mapping techniques using speciϐic ROS-sensitive 
dyes and ϐluorescent sensors [28].

In this case, the most oxidized areas in the sample may 

not directly correspond to ROS-generating locations due 
to the different oxidability of the macromolecular cell 
components, organelles, and the permeability differences 
for different compartments. In this regard, to objectively 
compare singlet oxygen generation efϐiciency in different 
sample areas, it is necessary to use not the indirect methods 
of ROS determination by the oxidation products, but the direct 
(in particular, ϐluorescent) methods for detecting reactive 
oxygen species in situ during separation, which requires the 
development of the control algorithms for the mechatronic 
subsystem of the installation corresponding to the speciϐic 
exposure conditions. 

In other words, in a number of experimental techniques, this 
installation will make it possible to map not the redox status 
of the cell as a ϐinal chemical outcome, but rather its lability 
or resistance, reϐlecting the physiological status, oxidability 
of a particular area depending on the microwave irradiation 
parameters. This is a qualitatively new form of functional-
morphological and clinical-histochemical interpretation of in 
situ analysis, taking into account the form and parameters of 
the inductor, which were not fully described in this study [29].

Since microwaves at a wavelength of 2.45 GHz provide 
heating of the biological structures, and the heating of a 
particular structure depends on the water content, high-
resolution thermography can be performed over an extended 
dynamic range in this installation - the so-called NIR-
HDRI thermography (or bolometric measurements using 
enthrakometers [30]), with the co-localization analysis of the 
ROS and water content and thermographic characteristics 
mapped under the microwave irradiation. Accordingly, in the 
dynamic version, the technique proposed can be partially used 
to analyze diffusion processes and heat and mass transport. 
This may be useful not so much for monitoring the living cells 
or tissues, which are typically destroyed during such sample 
preparation, but for monitoring vesicular transporters of the 
pharmaceuticals at the preclinical stage.

It is noteworthy that the ϐirst installation shown in Figure 1 
was not optimal in terms of the ratio of the chamber size and the 

Figure 1: Modifi ed SEM column for microwave, optical, and photochemical 
investigations of the living tissues.
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wavelength used, that is: the working chamber as a resonator 
formed suboptimal conϐigurations of standing waves with 
the multiple reϐlections from the walls, therefore producing 
overheating, heating gradients, and operational instability 
due to the insufϐicient chamber volume. Therefore, while 
formulating the priority, we cannot yet suggest the prospects 
for immediate introducing of this tool into the widespread 
biomedical practice, since its numerical optimization is 
required using HFSS (from ANSYS) or its analogs.

Conclusion
Thus, this is the ϐirst system designed to study ROS 

production depending on the irradiation parameters; to 
determine co-localization with other physicochemical 
parameters related to irradiation; to perform microwave 
heating thermography and to quantify analyte concentration; 
to employ ϐluorescent techniques using ϐiber optic 
spectroϐluorimetry in order to perform direct detection of the 
ROS generated.
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