Abstract

Research Article

Is advanced Coupling Methods best fitted in Biosensing of Microparticles?

Alexander E Berezin*

Published: 17 July, 2017 | Volume 1 - Issue 1 | Pages: 054-060

Microparticles (MPs) are considered important diagnostic biological markers in many diseases with promising predictive value. There are several methods that currently used for the detection of number and characterization of structure and features of MPs. Therefore, the MP detection methods have been remained pretty costly and time consuming. The review is depicted the perspectives to use coupling methods for MP measurement and structure assay. Indeed, there is large body evidence regarding that the combination of atomic force microscopy or coupling nanoparticle tracking analysis (NTA) with microbeads, plasmon resonance method and fluorescence quantum dots could exhibit much more accurate ability to detect both number and structure of MPs when compared with traditional flow cytometry and fluorescent microscopy. Whether several combined methods would be useful for advanced MP detection is not fully clear, while it is extremely promising.

Read Full Article HTML DOI: 10.29328/journal.hjb.1001005 Cite this Article Read Full Article PDF

Keywords:

Microparticles; Detection; Analytical limitations; Biomarker; Probability

References

  1. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013; 113: 1-11. Ref.: https://goo.gl/3b81cX
  2. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, et al. Endothelial microparticles in diseases. Cell Tissue Res. 2009; 335: 143-151. Ref.: https://goo.gl/m8owYU
  3. Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and disease. Platelets. 2017; 28: 214-221. Ref.: https://goo.gl/j4CcNZ
  4. Berezin AE. Microparticles in Chronic Heart Failure. Adv Clin Chem. 2017; 81: 1-41. Ref.: https://goo.gl/AVZnPT
  5. Berezin A. Impaired Phenotype of Circulating Endothelial-Derived Microparticles: Novel Marker of Cardiovascular Risk. J Cardiology Therapy. 2015; 2: 273-278. Ref.: https://goo.gl/KZbGrb
  6. Berezin AE. Prognostication in different heart failure phenotypes: the role of circulating biomarkers. J Circulating Biomarkers. 2016; 5: 1. Ref.: https://goo.gl/i5kJnA
  7. Berezin AE. Biological markers of cardiovascular diseases. Part 4. Diagnostic and prognostic value of biological markers at risk stratification among patients with heart failure. LAMBERT Academic Publishing GmbH, Moskow, 2015; 329.
  8. Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA, et al. The utility of biomarker risk prediction score in patients with chronic heart failure. Int J Clin Exp Med. 2015; 8: 18255-18264. Ref.: https://goo.gl/XQEZ22
  9. Jaiswal R, Johnson MS, Pokharel D, Krishnan SR, Bebawy M. Microparticles shed from multidrug resistant breast cancer cells provide a parallel survival pathway through immune evasion. BMC Cancer. 2017; 17: 104. Ref.: https://goo.gl/emRvd4
  10. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011; 31, 27-33. Ref.: https://goo.gl/Pv5VcA
  11. Berezin AE. Biomarkers for cardiovascular risk in diabetic patients. Heart. 2016; 102: 1939-1941. Ref.: https://goo.gl/xLwZaS
  12. Forde CT, Karri SK, Young AM, Ogilvy CS. Predictive markers in traumatic brain injury: opportunities for a serum biosignature. Br J Neurosurg. 2014; 28: 8-15. Ref.: https://goo.gl/iyQt4k
  13. Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. The pattern of circulating microparticles in patients with diabetes mellitus with asymptomatic atherosclerosis. Acta Clin Belg. 2016; 71: 38-45. Ref.: https://goo.gl/XAAA6f
  14. Berezin AE. Impaired Immune Phenotype of Endothelial Cell-derived Micro Particles: The Missing Link between Diabetes-related States and Risk of Cardiovascular Complications. Genomics Proteomics. 2016; 7: 195-197.
  15. Berezin AE, Mokhnach RE. The promises, methodological discrepancies and pitfalls in measurement of cell-derived extracellular vesicles in diseases. J Biotechnol Biomater. 2016; 6: 232-239. Ref.: https://goo.gl/uomWep
  16. Briens A, Gauberti M, Parcq J, Montaner J, Vivien D, et al. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles. Theranostics. 2016; 6: 610-626. Ref.: https://goo.gl/rGexsi
  17. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013; 2. Ref.: https://goo.gl/xbVjLb
  18. Van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012; 10: 919-930. Ref.: https://goo.gl/YYDaxa
  19. Simonsen JB. A liposome-based size calibration method for measuring microvesicles by flow cytometry. J Thromb Haemost. 2016; 14: 186-190. Ref.: https://goo.gl/W3EWW6
  20. Ben-Dov IZ, Whalen VM, Goilav B, Max KE, Tuschl T. Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies. PLoS One. 2016; 11: 0147249. Ref.: https://goo.gl/QHgvyy
  21. Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017; 28: 256-262. Ref.: https://goo.gl/nRb2m3
  22. Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 618-634. Ref.: https://goo.gl/zA62JD
  23. Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost. 2010; 8: 315-323. Ref.: https://goo.gl/22HJhe
  24. van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010; 8: 2596-2607. Ref.: https://goo.gl/zsvvFY
  25. Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and synamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008; 10: 89-96. Ref.: https://goo.gl/n7RHo4
  26. Vogel R, Wilmott G, Kozak DM, Roberts GS, Anderson W, et al. Quantitative sizing of nano/microparticles with tunable elastomeric pore sensor. Anal Chem. 2011; 83: 3499-3506. Ref.: https://goo.gl/13BaUr
  27. Zhang H, Chon CH, Pan X, Li D. Methods for counting particles in microfluidic applications. Microfluid Nanofluid. 2009; 7: 739-749. Ref.: https://goo.gl/kowxgD
  28. Spill YG, Nilges M. SAS profile correlations reveal SAS hierarchical nature and information content. PLoS One. 2017; 12: e0177309. Ref.: https://goo.gl/ZFbTvX
  29. Krumrey M, Gleber G, Scholze F, Wernecke J. Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology. Meas Sci Technol. 2011; 22: 094032. Ref.: https://goo.gl/1qBo3H
  30. Kosman J, Jatschka J, Csaki A, Fritzsche W, Juskowiak B, et al. A New Strategy for Silver Deposition on Au Nanoparticles with the Use of Peroxidase-Mimicking DNAzyme Monitored via a Localized Surface Plasmon Resonance Technique. Sensors (Basel). 2017; 17: Ref.: https://goo.gl/5CHLSM
  31. Antohe I, Spasic D, Delport F, Li J, Lammertyn J. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology. 2017; 28: 215301. Ref.: https://goo.gl/7gMkRY
  32. Enjeti AK, Ariyarajah A, D'Crus A, Seldon M, Lincz LF. Correlative analysis of nanoparticle tracking, flow cytometric and functional measurements for circulating microvesicles in normal subjects. Thromb Res. 2016; 145: 18-23. Ref.: https://goo.gl/KGEzNE
  33. Obeid S, Ceroi A, Mourey G, Saas P, Elie-Caille C, et al. Development of a NanoBioAnalytical patform for "on-chip" qualification and quantification of platelet-derived microparticles. Biosens Bioelectron. 2017; 93: 250-259. Ref.: https://goo.gl/Hqq1GR
  34. Wang J, Zhong Y, Ma X, Xiao X, Cheng C, et al. Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis. Sci Rep. 2016; 6: 24679. Ref.: https://goo.gl/GoHFXi
  35. Patil R, Ghosh K, Shetty S. A simple clot based assay for detection of procoagulant cell-derived microparticles. Clin Chem Lab Med. 2016; 54: 799-803. Ref.: https://goo.gl/2RMpny
  36. Berezin AE, Mokhnach RE, Byalik HA. Biosensing of red blood cell-derived extracellular vesicles with the advanced bright-field light optical polarization microscopy. Int J Biotech Bioeng.2017; 3: 63-67. Ref.: https://goo.gl/HFL6Jx
  37. Xi Y, Pozzo LD. Electric field directed formation of aligned conjugated polymer fibers. Soft Matter. 2017. 13: 3894-3908. Ref.: https://goo.gl/ZioiXP
  38. Chiu NF, Kuo CT, Lin TL, Chang CC, Chen CY. Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin. Biosens Bioelectron. 2017; 94: 351-357. Ref.: https://goo.gl/nZEij2
  39. Erdbrügger U, Lannigan J. Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry A. 2016; 89: 123-134. Ref.: https://goo.gl/BZPyX1
  40. Kumar S, Milani G, Takatsuki H, Lana T, Persson M, et al. Sensing protein antigen and microvesicle analytes using high-capacity biopolymer nano-carriers. Analyst. 2016; 141: 836-846. Ref.: https://goo.gl/KFUDw2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More