Abstract

Research Article

Antimicrobial resistance of Klebsiella pneumoniae strains isolated from urine in hospital patients and outpatients

Zeljko Cvetnić*, Maja Ostojic, Mahir Hubana, Marija Cvetnić and Miroslav Benić

Published: 26 February, 2021 | Volume 5 - Issue 1 | Pages: 001-007

Background: Klebsiella pneumoniae is a bacterial species that often causes infections in humans. Infections occur most frequently in hospitalised or immunocompromised patients and are treated with antimicrobials. In recent decades, K. pneumoniae has developed significant resistance to many antimicrobials.

Objective: The main goal of this study was to determine the frequency of resistance of isolated K. pneumoniae strains from urine samples of hospital patients and outpatients, and to find evidence of ESBL strains and their resistance to certain antibiotics.

Methods: During the study period, Klebsiella pneumonia was isolated from the urine samples of 430 patients. The procedure for processing of urine samples, identification, susceptibility toward antimicrobials and evidence of ESBL strains were carried out according to the recommended standards.

Results: Of the total K. pneumoniae isolates, 153 (35.6%) were isolated from hospital patients and 277 (64.4%) from outpatients. Strains isolated from hospital patients were resistant to each tested antibiotic. ESBL strains were detected in 169 (39.30%) samples, 92 (60.13%) from hospital patients and 77 (27.8%) from outpatients.

Conclusion: Strains of K. pneumoniae isolated from the urine of hospital patients and outpatients have developed significant resistance against all tested antibiotic substances. A higher occurrence of ESBL strains was observed in hospital patients than in outpatients. ESBL strains were resistant to all penicillins and almost all cephalosporins. Highly effective antimicrobials were amikacin, colistine, carbapenem and fosfomycin. The best therapeutic results were achieved when patients were treated with fosfomycin and imipenem.

Read Full Article HTML DOI: 10.29328/journal.abb.1001021 Cite this Article Read Full Article PDF

Keywords:

Klebsiella pneumonia; Antibiotic resistance; ESBL strain; Hospital patients; Outpatients

References

  1. Kalenić S, Medical Microbiology. Enterobacteriaceae. Medicinska naklada. 2013; 182-197.
  2. Martin MM, Bachman MA, Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018; PubMed: https://pubmed.ncbi.nlm.nih.gov/29404282/
  3. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014: 370: 1198-1208. PubMed: https://pubmed.ncbi.nlm.nih.gov/24670166/
  4. Paterson DL. Resistence in Gram-negative bacteria. Enterobacteriaceae. 2006. Am J Med. 119; S8-S20. PubMed: https://pubmed.ncbi.nlm.nih.gov/16735147/
  5. Sekowska A, Janicka G, Klyszejko C. Wojda M, Wroblewski M, et al. Rezistence of Klebsiella pneumoniae strains producing and not producing ESLB (extended spectrum beta lactamase) type enzymes to selected non-beta-lactam antibiotics. Med Sci Mon. 2002; 3: 100-104. PubMed: https://pubmed.ncbi.nlm.nih.gov/11889457/
  6. Podschun R, Pietsch S, Höller C, Ullmann U. Incidence of Klebsiella species in surface waters and their expression of virulence factors. Appl Environ Microbiol. 2001; 67: 3325-3327. PubMed. https://pubmed.ncbi.nlm.nih.gov/11425763/
  7. Marques C, Menezes J, Belas A, Aboim C, Cavaco-Silva P, et al. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: population structure, antimicrobial resistance and virulence genes. J Antimicrob Chemother. 2019; 74: 594-602. PubMed. https://pubmed.ncbi.nlm.nih.gov/30535393/
  8. Jarvis WR, Munn VP, Highsmith AK, Culver DH, Hughes JM. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect Control. 1985; 6: 68-74. PubMed. https://pubmed.ncbi.nlm.nih.gov/3882593/
  9. Farida H, Severin JA, Gasem MH, Keuter M, van den Broek P, et al. Nasopharyngeal carriage of Klebsiella pneumoniae and other gram-negative Bacilli in pneumonia-prone age groups in Semarang, Indonesia. J Clin Microbiol. 2013; 51: 1614-1616. PubMed. https://pubmed.ncbi.nlm.nih.gov/23486716/
  10. Dorman MJ. Short FL. Klebsiella pneumoniae: when a colonizer turns bad. Nat Rev Microbiol. 2017; 15: 384. PubMed. https://pubmed.ncbi.nlm.nih.gov/28579608/
  11. Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother. 2017; 29: 2-9. PubMed. https://pubmed.ncbi.nlm.nih.gov/29271736/
  12. Falagas ME, Karageorgopoulos DE. Extended spectrum ß-lactamase producing organisms. J Hosp Inf. 2009; 73: 345-354. PubMed. https://pubmed.ncbi.nlm.nih.gov/19596491/
  13. Nathisuwan S, Burgess DS, Lewis JS. Extended Spectrum ß- Lactamases: Epidemiology, Detection, and Treatment. Pharmacother. 2001; 21: 920-928. PubMed. https://pubmed.ncbi.nlm.nih.gov/11718498/
  14. Kumarasamy KK, Toleman MA, Wals TR, Bagaria J, Butt F, et al. Emergence of a new antibiotic resistence mechanism in India, Pakistan and the UK: a molecular, biological, and epidemiological study. Lanc Infect Dis. 2010; 10: 597-602. PubMed: https://pubmed.ncbi.nlm.nih.gov/20705517/
  15. Abbott S. Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas and other Enterobacteriaceae. U: Versalovic J, Carrol KC, Funke G, Jorgensen JH, Landry ML, Warnoc D. Manual of Clinical Mikrobiology 10ed. ASM Press, Washington, DC. 2011; 639-6757.
  16. The European Committee on Antimicrobial Susceptibility testing. Breakpoint tables for interpretation of MICs and zone diameters (EUCAST). https://www.eucast.org/mic_distributions_and_ecoffs/
  17. Clinical and Laboratory Standard Institute. https://clsi.org/about/blog/how-using-clsi-s-m100-helps-the-fight-against-antimicrobial-resistance-1
  18. Dortet L, Poirel L, Nordmann P. Rapid Detection of ESBL-Producing Enterobacteriaceae in Blood Cultures. Emer Inf Dis. 2015; 21: 504-507. PubMed: https://pubmed.ncbi.nlm.nih.gov/25695535/
  19. Thomson, KS. Controversies about Extended-Spectrum and AMPC Beta- Lactamases. Emerg Infect Dis. 2001: 7: 333-336. PubMed: https://pubmed.ncbi.nlm.nih.gov/11294735/
  20. Simmering JE, Tang F, Cavanaugh JE, Polgreen LA, Polgreen PM. The Increase in Hospitalizations for Urinary Tract Infections and the Associated Costs in the United States, 1998–2011. Open Forum Infect Dis. 4: ofw281. PubMed: https://pubmed.ncbi.nlm.nih.gov/28480273/
  21. Zilberberg MD, Shorr AF. Secular trends in gram-negative resistance among urinary tract infection hospitalizations in the United States, 2000-2009. Infect Control Hosp Epidemiol. 2013; 34: 940–946. PubMed: https://pubmed.ncbi.nlm.nih.gov/23917908/
  22. Sanchez GV, Master RN, Clark RB, Fyyaz M, Duvvruri P, et al. Klebsiella pneumoniae Antimikrobial Drug Resistence. United States, 1998-2010. Emerg Infect Dis. 2013; 19: 133-136. PubMed: https://pubmed.ncbi.nlm.nih.gov/23260464/
  23. Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother. 2005; 49: 4423–4424.
  24. Chakraborty S, Moksina K, Sarker PK, Alam MZ, Karim IA, Abu Sayem SM. Prevalence, antibiotic susceptibility profiles and ESBL production in Klebsiella pneumoniae and Klebsiella oxytoca among hospitalized patient. Periodicum Biologorum. 2016; 118: 53-58.
  25. Gniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect. 2001; 7: 597-608. PubMed: https://pubmed.ncbi.nlm.nih.gov/11737084/
  26. Shehabi AA, Mahafzah A, Baadran I, Qadar FA, Dajani N. High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum B-lactam drugs in intensive care units. Diagn Microbiol Infect Dis. 2000; 36:53-56. PubMed: https://pubmed.ncbi.nlm.nih.gov/10744368/
  27. Tambić Andrašević A. Etiology of urogenital infection. Medicus 2012: 21: 15-21.
  28. Paterson DL, Yu VI. Extended -spectrum beta lactamases: a call for improved detection and control. Clin Infect Dis. 1999; 29: 1419-1422. Pubmed: https://pubmed.ncbi.nlm.nih.gov/10585789/
  29. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, et al. Antibiotic Therapy for Klebsiella pneumoniae Bacteremia: Implications of Production of Extended-Spectrum β-Lactamases. Clin Infect Dis. 2004; 39: 31–37. PubMed: https://pubmed.ncbi.nlm.nih.gov/15206050/
  30. Sakkas H, Bozidis P, Ilia A, Mpekoulis G, Papadopoulou C. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiotics (Basel). 2019; 8: 85.
  31. Grundmann H, Livermore Dm, Giske CG, Rossolini GM, Campos J, et al. Carbapenem-non-suspceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Eurosuveillance. 2010; 15: 22-35. Pubmed: https://pubmed.ncbi.nlm.nih.gov/21144429/
  32. Pitout JD, Hanson ND, Church Dl, Laupland KB. Population based laboratory survaillance for E. coli producing ESBL: Importance of Community isolates withblaCIX-M genes. Clin Infect Dis. 2004; 38: 1736-1741. Pubmed: https://pubmed.ncbi.nlm.nih.gov/15227620/
  33. Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL Production Among E. coli and Klebsiella spp. Causing Urinary Tract Infection: A Hospital Based Study. Open Microbiol J. 2017; 11: 23-30. Pubmed: https://pubmed.ncbi.nlm.nih.gov/28553414/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?