Abstract

Review Article

Microalgal Derivatives as Potential Nutraceutical and Pharmaceutical: Boon to Human Beings

Namrata Dash, Amit Kumar Bajhaiya, Chandrashaker B and Poornachandar Gugulothu*

Published: 18 June, 2024 | Volume 8 - Issue 1 | Pages: 0170-026

Background: Marine resources have diverse biological and beneficial entities for human beings. Among them, microalgae are one of the eukaryotic photosynthetic organisms found in freshwater and marine environments with an immense source of metabolites. They consist of high nutraceutical and value-added compounds for health concerns. 
Objective: Most microalgal species like- chlorella, spirulina, Isochrysis, Nannochloropsis, etc. are found to synthesize biologically active secondary metabolites which are having high pharmaceutical and nutraceutical value. Some of the purely extracted compounds are Lecithin, fucoxanthin, astaxanthin, and most important Sulphur polysaccharides- fucose, galactose, xylose, rhamnose, etc. are providing anti-microbial, anti-fungal, anti-viral, anti-cancer and anti-diabetic activities.
Methods: Many of the prior studies demonstrated the compilation of naturally derived secondary metabolites for their potential application in most fields. Because of their wide-ranging potential for use in biopharmaceutical and nutraceutical industries, microalgae have recently gained significant interest on a global scale.
Result: Microalgae are both parts of the dietary ingredients and bioactive pharmaceuticals. A number of microalgal species have been explored for their significance towards their high-value products with their exceptional pharmacological and biological properties.
Conclusion: This current review discussed the uses and benefits of microalgae for the manufacture of nutraceuticals and the medicinal use of diverse bioactive compounds.

Read Full Article HTML DOI: 10.29328/journal.abb.1001040 Cite this Article Read Full Article PDF

Keywords:

Microalgae; Carbohydrates; Proteins; Lipids; Omega fatty acids

References

  1. McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001; 37(6):951-959. doi:10.1046/j.1529-8817.2001.01126.x
  2. Wright SW, Jeffrey SW. Pigment markers for phytoplankton production. Handb Environ Chem. 2006; (2):71-104. doi:10.1007/698_2_003
  3. Manning SR, Nobles DR. Impact of global warming on water toxicity: cyanotoxins. University of Texas at Austin, UTEX Culture Collection of Algae, Department of Molecular Biosciences; 2017:1-15.
  4. Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Convers Manage. 2011; 52(1):163-170. doi:10.1016/j.enconman.2010.06.055
  5. Hu GP, Yuan J, Sun L, She ZG, Wu JH, Lan XJ, Zhu X, Lin YC, Chen SP. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs. 2011;9(4):514-525. doi: 10.3390/md9040514. Epub 2011 Mar 29. PMID: 21731546; PMCID: PMC3124969.
  6. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. 2012; 24(6):1477-1486. doi:10.1007/s10811-012-9804-6
  7. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen K, Romano G, Ianora A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci. 2016; 3:68. doi:10.3389/fmars.2016.00068
  8. Beetul K, Gopeechund A, Kaullysing D, Mattan-Moorgawa S, Puchooa D, Bhagooli R. Challenges and Opportunities in the Present Era of Marine Algal Applications. Algae - Organisms for Imminent Biotechnology. Published online 2016. doi:10.5772/63272
  9. Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018 Mar 5;17(1):36. doi: 10.1186/s12934-018-0879-x. PMID: 29506528; PMCID: PMC5836383.
  10. Koyande AK, Chew KW, Rambabu K, Tao Y, Chu DT, Show PL. Microalgae: A potential alternative to health supplementation for humans. Food Sci Hum Wellness. 2019; 8(1):16-24.
  11. Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar Drugs. 2011;9(4):625-644. doi: 10.3390/md9040625. Epub 2011 Apr 20. PMID: 21731554; PMCID: PMC3124977.
  12. Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel MYY. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana(UKM2), Chlorella (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci. 2022 Feb;29(2):1043-1052. doi: 10.1016/j.sjbs.2021.09.069. Epub 2021 Oct 2. PMID: 35197773; PMCID: PMC8848016.
  13. Bozarth A, Maier UG, Zauner S. Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol. 2009 Feb;82(2):195-201. doi: 10.1007/s00253-008-1804-8. Epub 2008 Dec 11. PMID: 19082585.
  14. Lavrentyev PJ, Franzè G, Pierson JJ, Stoecker DK. The effect of dissolved polyunsaturated aldehydes on microzooplankton growth rates in the Chesapeake Bay and Atlantic coastal waters. Mar Drugs. 2015 May 6;13(5):2834-56. doi: 10.3390/md13052834. PMID: 25955757; PMCID: PMC4446608.
  15. Gastineau R, Turcotte F, Pouvreau JB, Morançais M, Fleurence J, Windarto E, Prasetiya FS, Arsad S, Jaouen P, Babin M, Coiffard L, Couteau C, Bardeau JF, Jacquette B, Leignel V, Hardivillier Y, Marcotte I, Bourgougnon N, Tremblay R, Mouget JL. Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs. 2014; 12(6):3161-3189. doi:10.3390/md12063161
  16. Zaid AAA, Hammad DM, Sharaf EM. Antioxidant and anticancer activity of Spirulina platensis water extracts. Int J Pharmacol. 2015; 11(7):846-851. doi:10.3923/ijp.2015.846.851
  17. Yim HE, Yoo KH, Seo WH, Won NH, Hong YS, Lee JW. Acute tubulointerstitial nephritis following ingestion of Chlorella tablets. Pediatr Nephrol. 2007 Jun;22(6):887-8. doi: 10.1007/s00467-006-0420-z. Epub 2007 Feb 2. PMID: 17273860.
  18. Dietrich D, Agency GF, Assessment R, Chlorella W, Lake K, Dietrich D. Food supplements from blue-green algae do more harm than good. Gesundheitsindustrie BW. Accessed June 17, 2024. https://www.gesundheitsindustrie-bw.de/en/article/news/food-supplements-from-blue-green-algae-do-more-harm-than-good/
  19. Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. J Agric Food Chem. 2009 Aug 26;57(16):7159-70. doi: 10.1021/jf901070g. PMID: 19650628.
  20. Nakamura Y, Takahashi JI, Sakurai A, Inaba Y, Suzuki E, Nihei S, Fujiwara S, Tsuzuki M, Miyashita H, Ikemoto H, Kawachi M, Sekiguchi H, Kurano N. Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol. 2005; 46(3):539-545. doi:10.1093/pcp/pci045
  21. Busi MV, Barchiesi J, Martín M, Gomez-Casati DF. Starch metabolism in green algae. Starch/Staerke. 2014; 66(1-2):28-40. doi:10.1002/star.201200211
  22. Cain DJR. AMYLOSE in floridean starch. 1981:67-71.
  23. Qu L, Ren LJ, Huang H. Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochem Eng J. 2013; 77:82-87. doi:10.1016/j.bej.2013.05.011
  24. Muller-Feuga A, Moal J, Kaas R. The Microalgae of Aquaculture. In: Live Feeds in Marine Aquaculture. November 2007. doi:10.1002/9780470995143.ch6
  25. Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs. 2018 Oct 23;16(11):400. doi: 10.3390/md16110400. PMID: 30360515; PMCID: PMC6266857.
  26. Rupérez P. Mineral content of edible marine seaweeds. Food Chem. 2002; 79(1):23-26. doi:10.1016/S0308-8146(02)00171-1
  27. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front Microbiol. 2016 May 3;7:546. doi: 10.3389/fmicb.2016.00546. PMID: 27199903; PMCID: PMC4853371.
  28. Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JC. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol (NY). 2008 Sep-Oct;10(5):602-11. doi: 10.1007/s10126-008-9100-2. Epub 2008 May 1. PMID: 18449600.
  29. Panis G, Carreon JR. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016; 18:175-190. doi:10.1016/j.algal.2016.06.007
  30. Xia S, Gao B, Li A, Xiong J, Ao Z, Zhang C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar Drugs. 2014 Sep 23;12(9):4883-97. doi: 10.3390/md12094883. PMID: 25251034; PMCID: PMC4178495.
  31. Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013 Jul 23;11(7):2667-81. doi: 10.3390/md11072667. PMID: 23880936; PMCID: PMC3736445.
  32. Raposo MF, de Morais AM, de Morais RM. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar Drugs. 2015 Aug 14;13(8):5128-55. doi: 10.3390/md13085128. PMID: 26287216; PMCID: PMC4557017.
  33. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013 Apr;21(2):143-52. doi: 10.1016/j.jsps.2012.05.002. Epub 2012 Jun 15. PMID: 24936134; PMCID: PMC4052538.
  34. Kang KH, Qian ZJ, Ryu B, Karadeniz F, Kim D, Kim SK. Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in HepG2/CYP2E1 cells induced by ethanol. Phytother Res. 2012 Oct;26(10):1555-63. doi: 10.1002/ptr.4603. Epub 2012 Mar 19. PMID: 22431441.
  35. Sheih IC, Fang TJ, Wu TK. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem. 2009; 115(1):279-284. doi:10.1016/j.foodchem.2008.12.019
  36. Lancaster JR Jr. Sickle cell disease: loss of the blood's WD40? Trends Pharmacol Sci. 2003 Aug;24(8):389-91. doi: 10.1016/S0165-6147(03)00199-8. PMID: 12915046.
  37. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:963520. doi: 10.1155/2013/963520. Epub 2013 Dec 5. PMID: 24381719; PMCID: PMC3871919.
  38. Robertson RC, Guihéneuf F, Bahar B, Schmid M, Stengel DB, Fitzgerald GF, Ross RP, Stanton C. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages. Mar Drugs. 2015 Aug 20;13(8):5402-24. doi: 10.3390/md13085402. PMID: 26308008; PMCID: PMC4557028.
  39. Banskota AH, Gallant P, Stefanova R, Melanson R, O'Leary SJ. Monogalactosyldiacylglycerols, potent nitric oxide inhibitors from the marine microalga Tetraselmis chui. Nat Prod Res. 2013;27(12):1084-90. doi: 10.1080/14786419.2012.717285. Epub 2012 Sep 14. PMID: 22973805.
  40. Vo TS, Kim JA, Wijesekara I, Kong CS, Kim SK. Potent effect of brown algae (Ishige okamurae) on suppression of allergic inflammation in human basophilic KU812F cells. Food Sci Biotechnol. 2011; 20(5):1227-1234. doi:10.1007/s10068-011-0169-4
  41. Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2694-701. doi: 10.1167/iovs.02-0822. PMID: 12766075.
  42. Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res. 2003 Jun;17(6):665-70. doi: 10.1002/ptr.1227. PMID: 12820237.
  43. Lee H, Kim JS, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One. 2012;7(11):e50624. doi: 10.1371/journal.pone.0050624. Epub 2012 Nov 30. PMID: 23226337; PMCID: PMC3511566.
  44. Doyle A. Microalbuminuria in diabetic patients. Nurs Times. 1991; 87(28):43.
  45. Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs-A mechanistic revisit to understand their mode of action. Pharmacol Res. 2016 Nov;113(Pt A):636-674. doi: 10.1016/j.phrs.2016.09.029. Epub 2016 Sep 30. PMID: 27697646.
  46. Cheng Y, Sibusiso L, Hou L, Jiang H, Chen P, Zhang X, Wu M, Tong H. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int J Biol Macromol. 2019 Jun 15;131:1162-1170. doi: 10.1016/j.ijbiomac.2019.04.040. Epub 2019 Apr 8. PMID: 30974142.
  47. Daub CD, Mabate B, Malgas S, Pletschke BI. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. Int J Biol Macromol. 2020 May 15;151:412-420. doi: 10.1016/j.ijbiomac.2020.02.161. Epub 2020 Feb 16. PMID: 32070744.
  48. Kim KT, Rioux LE, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 2014 Feb;98:27-33. doi: 10.1016/j.phytochem.2013.12.003. Epub 2013 Dec 30. PMID: 24388677.
  49. Lee YS, Shin KH, Kim BK, Lee S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res. 2004 Nov;27(11):1120-2. doi: 10.1007/BF02975115. PMID: 15595413.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?