Overview of Interferon: Characteristics, signaling and anti-cancer effect

Main Article Content

Huaiyuan Wang
Haijun Hu
Kangjian Zhang

Abstract

Interferons are multifunctional cytokines widely used in clinical settings as an anti-viral drug. In addition, interferon’s exhibit anti-cancer and anti-bacterial effects. Nearly two thousand papers related to interferon are published each year, which illustrates the importance placed by researchers on the study of interferon. This review focuses on recent advances in the study of interferon, particularly in the areas of its mechanism of anti-cancer effect and signal transduction. We also describe the tumor resistance to interferon and the side-effect of interferon-based therapy, which leads to an expectation of future research of interferon.

Article Details

Wang, H., Hu, H., & Zhang, K. (2017). Overview of Interferon: Characteristics, signaling and anti-cancer effect. Archives of Biotechnology and Biomedicine, 1(1), 001–016. https://doi.org/10.29328/journal.hjb.1001001
Review Articles

Copyright (c) 2017 Wang H, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007; 6: 975-990. Ref.: https://goo.gl/pNdXwZ

Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003; 4: 69-77. Ref.: https://goo.gl/CKhZVH

Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003; 4: 63-68. Ref.: https://goo.gl/QbVahF

Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genetics. 2013; 45: 164-171. Ref.: https://goo.gl/jf8xKD

Weiss DL. Interferons and Interferon Inducers. JAMA. 1973; 226: 570. Ref.: https://goo.gl/KC9LyX

Wheelock EF. Interferon-like virus-inhibitor induced in human leukocytes by hytohemagglutinin. Science. 1965; 149: 310-311. Ref.: https://goo.gl/YV22cd

Freshman MM, Merigan TC, Remington JS, Brownlee IE. In vitro and in vivo antiviral action of an interferon-like substance induced by Toxoplasma gondii. Exp Biol Med. 1966; 123: 862-866. Ref.: https://goo.gl/M3Iunj

Li Y, Stafford WF, Hesselberg M, Hayes D, Wu Z, et al. Characterization of the self-association of human interferon-alpha2b, albinterferon-alpha2b, and pegasys. J Pharm Sci. 2012; 101: 68-80. Ref.: https://goo.gl/xKkrPE

Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003; 4: 63-68. Ref.: https://goo.gl/HzznrC

Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003; 4: 69-77. Ref.: https://goo.gl/F6Pnma

Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013. Ref.: https://goo.gl/CK0TQz

Hamming OJ, Terczyńska‐Dyla E, Vieyres G, Dijkman R, Jørgensen SE, et al. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses. EMBO J. 2013; 32: 3055-3065. Ref.: https://goo.gl/zjFOQy

Van Boxel-Dezaire AH, Rani MR, Stark GR. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity. 2006; 25: 361-372. Ref.: https://goo.gl/iqXiV0

Shiba M, Nonomura N, Nakai Y, Nakayama M, Takayama H, et al. Type-I interferon receptor expression: its circadian rhythm and downregulation after interferon-alpha administration in peripheral blood cells from renal cancer patients. Int J Urol. 2009; 16: 356-359. Ref.: https://goo.gl/vIuXPS

Baychelier F, Nardeux PC, Cajean-Feroldi C, Ermonval M, Guymarho J, et al. Involvement of the Gab2 scaffolding adapter in type I interferon signalling. Cell Signal. 2007; 19: 2080-2087. Ref.: https://goo.gl/XSTBT6

De Weerd NA, Vivian JP, Nguyen TK, Mangan NE, Gould JA, et al. Structural basis of a unique interferon-[beta] signaling axis mediated via the receptor IFNAR1. Nat Immunol. 2013; 14: 901-907. Ref.: https://goo.gl/xjVkq4

Kaur S, Platanias LC. IFN-[beta]-specific signaling via a unique IFNAR1 interaction. Nat Immunol. 2013; 14: 884-885. Ref.: https://goo.gl/A1MSx5

Ahmed CM, Noon-Song EN, Kemppainen K, Pascalli MP, Johnson HM. Type I IFN receptor controls activated TYK2 in the nucleus: implications for EAE therapy. J Neuroimmunol. 2013; 254: 101-109. Ref.: https://goo.gl/JwQhlC

Larkin Iii J, Johnson HM, Subramaniam PS. Differential nuclear localization of the IFNGR-1 and IFNGR-2 subunits of the IFN-γ receptor complex following activation by IFN-γ. J Interferon Cytokine Res. 2000; 20: 565-576. Ref.: https://goo.gl/z5reog

Subramaniam PS, Johnson HM. Lipid microdomains are required sites for the selective endocytosis and nuclear translocation of IFN-γ, its receptor chain IFN-γ receptor-1, and the phosphorylation and nuclear translocation of STAT1α. J Immunol. 2002; 169: 1959-1969. Ref.: https://goo.gl/203W8b

Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007; 449: 919-922. Ref.: https://goo.gl/23YTwH

Ji J, Shi J, Budhu A, Yu Z, Forgues M, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009; 361: 1437-1447. Ref.: https://goo.gl/tUY2tw

Siegrist F, Singer T, Certa U. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a. Biol Proced Online. 2009; 11: 113-129. Ref.: https://goo.gl/JGliZC

Sekiya Y, Ogawa T, Iizuka M, Yoshizato K, Ikeda K, et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol. 2011; 226: 2535-2542. Ref.: https://goo.gl/BzcjxN

Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009; 106: 9010-9015. Ref.: https://goo.gl/LbEUaU

Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 1999; 98: 597-608. Ref.: https://goo.gl/XNPTFU

Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007; 7: 454-465. Ref.: https://goo.gl/KZ22lo

Zimmerer JM, Lesinski GB, Kondadasula SV, Karpa VI, Lehman A, et al. IFN-alpha-induced signal transduction, gene expression, and antitumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling proteins. J Immunol. 2007; 178: 4832-4845. Ref.: https://goo.gl/dbBKpi

Rakesh K, Agrawal DK. Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol. 2005; 70: 649-657. Ref.: https://goo.gl/Nx1qyY

Win-Piazza H, Schneeberger V, Chen L, Pernazza D, Lawrence HR, et al. Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2. Cancer Letters. 2012. Ref.: https://goo.gl/hSHCEr

Hu S, Xie Z, Onishi A, Yu X, Jiang L, et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell. 2009; 139: 610-622. Ref.: https://goo.gl/m8xSwO

Bhattacharya S, Zheng H, Tzimas C, Carroll M, Baker DP, et al. Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNalpha via accelerating the degradation of its receptor. Blood. 2011; 118: 4179-4187. Ref.: https://goo.gl/bzU6Je

Huangfu WC, Qian J, Liu C, Liu J, Lokshin AE, et al. Inflammatory signaling compromises cell responses to interferon alpha. Oncogene. 2012; 31: 161-172. Ref.: https://goo.gl/kvAocc

Einat M, Resnitzky D, Kimchi A. Close link between reduction of c-myc expression by interferon and, G0/G1 arrest. Nature. 1985; 313: 597-600. Ref.: https://goo.gl/ur2eET

Tiefenbrun N, Melamed D, Levy N, Resnitzky D, Hoffman I, et al. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest. Mol Cell Biol. 1996; 16: 3934-3944. Ref.: https://goo.gl/X8G8jM

Petricoin EF, Ito S, Williams BL, Audet S, Stancato LF, et al. Antiproliferative action of interferon-alpha requires components of T-cell-receptor signalling. Nature. 1997; 390: 629-632. Ref.: https://goo.gl/drvaWw

Kalie E, Jaitin DA, Abramovich R, Schreiber G. An interferon α2 mutant optimized by phage display for IFNAR1 binding confers specifically enhanced antitumor activities. J Biol Chem. 2007; 282: 11602-11611. Ref.: https://goo.gl/oCG5pn

Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell. 2011; 146: 621-632. Ref.: https://goo.gl/rErOrF

Lim R, Knight B, Patel K, McHutchison JG, Yeoh GC, et al. Antiproliferative effects of interferon alpha on hepatic progenitor cells in vitro and in vivo. Hepatology. 2006; 43: 1074-1083. Ref.: https://goo.gl/CMOGx5

Yang G, Xu Y, Chen X, Hu G. IFITM1 plays an essential role in the antiproliferative action of interferon-gamma. Oncogene. 2007; 26: 594-603. Ref.: https://goo.gl/WEaP9d

Bailey CM, Abbott DE, Margaryan NV, Khalkhali-Ellis Z, Hendrix MJ. Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner. Mol Cell Biol. 2008; 28: 2235-2243. Ref.: https://goo.gl/gwHuHT

Hosono T, Tanaka T, Tanji K, Nakatani T, Kamitani T. NUB1, an interferon-inducible protein, mediates anti-proliferative actions and apoptosis in renal cell carcinoma cells through cell-cycle regulation. Br J Cancer. 2010; 102: 873-882. Ref.: https://goo.gl/QkTCX6

Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, et al. The PPAR-gamma agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-beta treated pancreatic cancer cells. Biotechnol Adv. 2012; 30: 169-184. Ref.: https://goo.gl/NkOSjx

Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, et al. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer. 2001; 93: 262-268. Ref.: https://goo.gl/u6Uakl

Carillo MC, Alvarez Mde L, Quiroga AD. Interferon alfa-2b triggers transforming growth factor-beta-induced apoptosis on preneoplasticliver. Ann Hepatol. 2006; 5: 244-250. Ref.: https://goo.gl/wJwZ1y

Pokrovskaja K, Panaretakis T, Grander D. Alternative signaling pathways regulating type I interferon-induced apoptosis. J Interferon Cytokine Res. 2005; 25: 799-810. Ref.: https://goo.gl/iQfd8X

Yin H, Xie F, Zhang J, Yang Y, Deng B, et al. Combination of interferon-alpha and 5-fluorouracil induces apoptosis through mitochondrial pathway in hepatocellular carcinoma in vitro. Cancer Lett. 2011; 306: 34-42. Ref.: https://goo.gl/C8Rroy

Dal Col J, Mastorci K, Fae DA, Muraro E, Martorelli D, et al. Alpha-interferon/retinoic acid combination inhibits growth and promotes apoptosis in mantle cell lymphoma through Akt-dependent modulation of critical targets. Cancer Res. 2012. Ref.: https://goo.gl/qJB1vX

Sun L, Wang H, Wang Z, He S, Chen S, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012; 148: 213-227. Ref.: https://goo.gl/8IQNiG

Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012; 148: 228-243. Ref.: https://goo.gl/ZLoEWl

Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol. 2012; 13: 954-962. Ref.: https://goo.gl/ya1cHa

Li P, Du Q, Cao Z, Guo Z, Evankovich J, et al. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett. 2012; 314: 213-222. Ref.: https://goo.gl/Qzcxfy

Chiantore MV, Vannucchi S, Accardi R, Tommasino M, Percario ZA, et al. Interferon-beta induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity. PloS One. 2012; 7: e36909. Ref.: https://goo.gl/YP7m9u

Ben Reguiga M, Bouquet C, Farinotti R, Bonhomme-Faivre L. Interferon-alpha improves docetaxel antitumoral and antimetastatic efficiency in Lewis lung carcinoma bearing mice. Life Sci. 2012; 91: 843-851. Ref.: https://goo.gl/FeRtGS

Cheng X, Liu Y, Chu H, Kao HY. Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha). J Biol Chem. 2012; 287: 23356-23367. Ref.: https://goo.gl/k0t6LI

Hudak L, Tezeeh P, Wedel S, Makarevic J, Juengel E, et al. Low dosed interferon alpha augments the anti-tumor potential of histone deacetylase inhibition on prostate cancer cell growth and invasion. Prostate. 2012; 72: 1719-1735. Ref.: https://goo.gl/2qdDe3

Rosewicz S, Detjen K, Scholz A, von Marschall Z. Interferon-alpha: regulatory effects on cell cycle and angiogenesis. Neuroendocrinology. 2004; 80: 85-93. Ref.: https://goo.gl/HaaT85

Indraccolo S, Tisato V, Tosello V, Habeler W, Esposito G, et al. Interferon-alpha gene therapy by lentiviral vectors contrasts ovarian cancer growth through angiogenesis inhibition. Hum Gene Ther. 2005; 16: 957-970. Ref.: https://goo.gl/i2F1GS

Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y. Combination of interferon and angiotensin-converting enzyme inhibitor, perindopril, suppresses liver carcinogenesis and angiogenesis in mice. Oncol Rep. 2005; 13: 491-495. Ref.: https://goo.gl/91pqpe

Lee J, Wang A, Hu Q, Lu S, Dong Z. Adenovirus-mediated interferon-beta gene transfer inhibits angiogenesis in and progression of orthotopic tumors of human prostate cancer cells in nude mice. Int J Oncol. 2006; 29: 1405-1412. Ref.: https://goo.gl/bUIiay

Lee JH, Chun T, Park SY, Rho SB. Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs. Biochim Biophys. 2008; 1783: 1654-1662. Ref.: https://goo.gl/DDPE23

Wang M, Zhang J, Wu X, Jin X, Zhao B, et al. Discovery of a pyrazole derivative promoting angiogenesis through modulating reactive oxygen species and interferon-inducible protein 10 levels. Mol Biol Rep. 2011; 38: 1491-1497. Ref.: https://goo.gl/tSEkZh

Xiao HB, Zhou WY, Chen XF, Mei J, Lv ZW, et al. Interferon-beta efficiently inhibited endothelial progenitor cell-induced tumor angiogenesis. Gene Ther. 2012. 19: 1030-1034. Ref.: https://goo.gl/Qk5VdO

Zheng H, Qian J, Carbone CJ, Leu NA, Baker DP, et al. Vascular endothelial growth factor-induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood. 2011; 118: 4003-4006. Ref.: https://goo.gl/MdNm02

Xiao HB, Zhou WY, Chen XF, Mei J, Lv ZW, et al. Interferon-beta efficiently inhibited endothelial progenitor cell-induced tumor angiogenesis. Gene Ther. 2012; 19: 1030-1034. Ref.: https://goo.gl/21ZLFU

Palmer KJ, Harries M, Gore ME, Collins MK. Interferon-alpha (IFN-alpha) stimulates anti-melanoma cytotoxic T lymphocyte (CTL) generation in mixed lymphocyte tumour cultures (MLTC). Clin Exp Immunol. 2000; 119: 412-418. Ref.: https://goo.gl/sj7Khn

Lombardi G, Dunne PJ, Scheel-Toellner D, Sanyal T, Pilling D, et al. Type 1 IFN maintains the survival of anergic CD4+ T cells. J Immunol. 2000; 165: 3782-3789. Ref.: https://goo.gl/8DN08B

Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med. 1999; 189: 521-530. Ref.: https://goo.gl/lztwR2

Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009; 86: 411-421. Ref.: https://goo.gl/7ZUudm

Frendeus KH, Wallin H, Janciauskiene S, Abrahamson M. Macrophage responses to interferon-gamma are dependent on cystatin C levels. Int J Biochem Cell Biol. 2009; 41: 2262-2269. Ref.: https://goo.gl/ApxJYn

Lin AA, Tripathi PK, Sholl A, Jordan MB, Hildeman DA. Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J Virol. 2009; 83: 8604-8615. Ref.: https://goo.gl/0Zdcgf

Reiter Z. Interferon--a major regulator of natural killer cell-mediated cytotoxicity. J Interferon Res. 1993; 13: 247-257. Ref.: https://goo.gl/VC6wpg

Tian P, Lin T, Hong J, Zhang Q, Wu H, Yu X, et al. 2′-5′P3A3 can enhance the activity of natural killer cells (in Chinese). Chinese Journal of Cell Biology. 1984; 6: 36-39.

Nakajima H, Oka Y, Tsuboi A, Tatsumi N, Yamamoto Y, et al. Enhanced tumor immunity of WT1 peptide vaccination by interferon-beta administration. Vaccine. 2012; 30: 722-729. Ref.: https://goo.gl/RwI0V7

Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+dendritic cells. J Exp Med. 2011; 208: 2005-2016. Ref.: https://goo.gl/9XH5rN

Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, et al. Interferon-gamma-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology. 2012; 217: 385-393. Ref.: https://goo.gl/8RxvpV

Yang YQ, Dong WJ, Yin XF, Xu YN, Yang Y, et al. Interferon-related secretome from direct interaction between immune cells and tumor cells is required for upregulation of PD-L1 in tumor cells. Protein Cell. 2016; 7: 538-543. Ref.: https://goo.gl/bQQnb3

Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, et al. Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell. 2016; 167: 1540-1554. Ref.: https://goo.gl/JbHDgv

Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010; 102: 493-501. Ref.: https://goo.gl/ncTijO

Naoe M, Ogawa Y, Hasebe Y, Morita J, Shichijo T, et al. Enhancement of IL-2-induced cytotoxicity by interferon-alpha in renal cell carcinoma. Oncol Res. 2011; 19: 479-486. Ref.: https://goo.gl/HNLPC1

Kasai K, Ushio A, Kasai Y, Sawara K, Miyamoto Y, et al. Therapeutic efficacy of combination therapy with intra-arterial 5-fluorouracil and systemic pegylated interferon alpha-2b for advanced hepatocellular carcinoma with portal venous invasion. Cancer. 2012; 118: 3302-3310. Ref.: https://goo.gl/fMoxVY

Khallouf H, Marten A, Serba S, Teichgraber V, Buchler MW, et al. 5-Fluorouracil and Interferon-alpha Immunochemotherapy Enhances Immunogenicity of Murine Pancreatic Cancer Through Upregulation of NKG2D Ligands and MHC Class I. J Immunother. 2012; 35: 245-253. Ref.: https://goo.gl/CmhIzB

ishman AI, Johnson B, Alexander B, Won J, Choudhury M, et al. Additively enhanced antiproliferative effect of interferon combined with proanthocyanidin on bladder cancer cells. J Cancer. 2012; 3: 107-112. Ref.: https://goo.gl/RfFlqq

Armstrong L, Arrington A, Han J, Gavrikova T, Brown E, et al. Generation of a novel, cyclooxygenase-2-targeted, interferon-expressing, conditionally replicative adenovirus for pancreatic cancer therapy. Am J surg. 2012; 204: 741-750. Ref.: https://goo.gl/z5P3dr

Armstrong L, Davydova J, Brown E, Han J, Yamamoto M, et al. Delivery of interferon alpha using a novel Cox2-controlled adenovirus for pancreatic cancer therapy. Surgery. 2012; 152: 114-122. Ref.: https://goo.gl/N96rR9

Huang H, Xiao T, He L, Ji H, Liu XY. Interferon-beta-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells. Acta Biochimi Biophys Sin. 2012; 44: 737-745. Ref.: https://goo.gl/JGQKIX

He LF, Wang YG, Xiao T, Zhang KJ, Li GC, et al. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-beta expression driven by hTERT promoter. Cancer Lett. 2009; 286: 196-205. Ref.: https://goo.gl/fKlXbt

Pockros PJ. Why do we need another interferon? Gastroenterology. 2010; 139: 1084-1086. Ref.: https://goo.gl/S1437v

Talpaz M, Hehlmann R, Quintas-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-alpha in the treatment of chronic myeloid leukemia. Leukemia. 2013; 27: 803-812. Ref.: https://goo.gl/PcWCOC

Kose S, Gozaydin A, Akkoclu G, Ece G. Chronic hepatitis B with type I diabetes mellitus and autoimmune thyroiditis development during interferon alpha therapy. J Infect Dev Ctries. 2012; 6: 364-368. Ref.: https://goo.gl/JjOqjY

Akeno N, Smith EP, Stefan M, Huber AK, Zhang W, et al. IFN-α mediates the development of autoimmunity both by direct tissue toxicity and through immune cell recruitment mechanisms. J Immunol. 2011; 186: 4693-706. Ref.: https://goo.gl/GkF94w

Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011; 286: 31168-79. Ref.: https://goo.gl/X2eujT

Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, et al. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Pro Natl Acad Sci. 2014; 111: 12562-7. Ref.: https://goo.gl/mi7kBJ

Lombardi A, Tomer Y. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress. J Autoimmun. 2017. Ref.: https://goo.gl/0g7JX3

Wang YX, Jiang CL, Lu CL, Song LX, You ZD, et al. Distinct domains of IFNalpha mediate immune and analgesic effects respectively. J Neuroimmunol. 2000; 108: 64-67. Ref.: https://goo.gl/bReYTV

Jiang CL, Son LX, Lu CL, You ZD, Wang YX, et al. Analgesic effect of interferon-alpha via mu opioid receptor in the rat. Neurochem Int. 2000; 36: 193-196. Ref.: https://goo.gl/GKdlIY

Wang YX, Xu WG, Sun XJ, Chen YZ, Liu XY, et al. Fever of recombinant human interferon-alpha is mediated by opioid domain interaction with opioid receptor inducing prostaglandin E2. J Neuroimmunol. 2004; 156: 107-112. Ref.: https://goo.gl/OqlJdG

Liu B, Liao J, Rao X, Kushner SA, Chung CD, et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A. 1998; 95: 10626-10631. Ref.: https://goo.gl/5KOmO3

Larner AC, Petricoin EF, Nakagawa Y, Finbloom DS. IL-4 attenuates the transcriptional activation of both IFN-alpha and IFN-gamma-induced cellular gene expression in monocytes and monocytic cell lines. J Immunol. 1993; 150: 1944-1950. Ref.: https://goo.gl/TVQfSy

Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999; 93: 1456-1463. Ref.: https://goo.gl/nO5yul

Park IK, Shultz LD, Letterio JJ, Gorham JD. TGF-beta1 inhibits T-bet induction by IFN-gamma in murine CD4+ T cells through the protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1. J Immunol. 2005; 175: 5666-5674. Ref.: https://goo.gl/g7ROyO

Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004; 173: 1444-1453. Ref.: https://goo.gl/4bgT5q

Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006; 16: 53-65. Ref.: https://goo.gl/ZZOzjC

Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998; 92: 4150-4166. Ref.: https://goo.gl/LeJe66

Katlinski KV, Gui J, Katlinskaya YV, Ortiz A, Chakraborty R, et al. Inactivation of Interferon Receptor Promotes the Establishment of Immune Privileged Tumor Microenvironment. Cancer Cell. 2017; 31: 194-207. Ref.: https://goo.gl/jp6uXg

Bernabei P, Bosticardo M, Losana G, Regis G, Di Paola F, et al. IGF-1 down-regulates IFN-gamma R2 chain surface expression and desensitizes IFN-gamma/STAT-1 signaling in human T lymphocytes. Blood. 2003; 102: 2933-2939. Ref.: https://goo.gl/7TuSgQ

Subramanian GM, Fiscella M, Lamouse-Smith A, Zeuzem S, McHutchison JG. Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol. 2007; 25: 1411-1419. Ref.: https://goo.gl/bkb2VO

Miller DM, Klucher KM, Freeman JA, Hausman DF, Fontana D, et al. Interferon lambda as a potential new therapeutic for hepatitis C. Ann N Y Acad Sci. 2009; 1182: 80-87. Ref.: https://goo.gl/ldK2yV

Ceaglio N, Etcheverrigaray M, Conradt HS, Grammel N, Kratje R, et al. Highly glycosylated human alpha interferon: An insight into a new therapeutic candidate. J Biotechnol. 2010; 146: 74-83. Ref.: https://goo.gl/5rQpRd

Xuan C, Steward KK, Timmerman JM, Morrison SL. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood. 2010; 115: 2864-2871. Ref.: https://goo.gl/EBTB8A

Yin XF, Yang YQ, Li HL, Xu YN, Chen LY, et al. A potent in vivo anti-tumor efficacy of novel recombinant type I interferon. Clin Cancer Res. 2017; 23: 2038-2049. Ref.: https://goo.gl/pU3Flg