ABC and MFS Transporters: A reason for Antifungal drug resistance
Main Article Content
Abstract
Fungi cause a variety of diseases and are difficult to treat owing to their eukaryotic nature resulting in dearth of antifungal targets at hand. This problem is further elevated many folds due to the resistance mechanisms of fungi through which they circumvent the antifungal drugs administered for therapeutic purposes. Fungi have a variety of strategies for obtaining these resistances, amongst them pivotal role is played by the ABC and MFS transporters. This article encompasses the important genes and their respective roles of both the classes of the transporters in different species of fungi.
Article Details
Copyright (c) 2018 Neelabh, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Pianalto KM, Alspaugh JA. New Horizons in antifungal therapy.J Fungi.2016; 4: 26. Ref.: https://goo.gl/Ay5dYZ
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. Hidden killers: human fungal infections.Sci Transl Med. 2012; 165: 165. Ref.: https://goo.gl/33Aymv
Chu DT, Plattner JJ, Katz L. New directions in antibacterial research.J Med Chem. 1996;39: 3853-3874. Ref.: https://goo.gl/VCmMK4
Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002; 359: 1135-1144. Ref.: https://goo.gl/439pW7b
Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation.FEMS Yeast Res. 2009;9: 1029-1050. Ref.: https://goo.gl/zEHzqX
Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, et al. Efflux-mediated antifungal drug resistance.Clin Microbiol Rev. 2009; 22: 291-321. Ref.: https://goo.gl/FFooGK
Bauer BE, Wolfger H, Kuchler K. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance.Biochim Biophys Acta. 1999; 1461: 217-236. Ref.: https://goo.gl/go9UVs
Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins.Nat Genet. 1997; 15: 137-145. Ref.: https://goo.gl/xcUV5X
Sipos G, Kuchler K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification.Curr Drug Targets. 2006; 7: 471-481. Ref.: https://goo.gl/4A6ijR
Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1.J Biol Chem. 1994; 269: 2206-2214. Ref.: https://goo.gl/U3bTgk
Bissinger PH, Kuchler K. Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem. 1994; 269: 4180-4186. Ref.: https://goo.gl/iz8FPk
Hirata D, Yano K, Miyahara K, Miyakawa T. Saccharomyces cerevisiae YDR1, which encodes a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance.Curr Genet. 1994;26: 285-294. Ref.: https://goo.gl/wHgpxt
Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.Antimicrob Agents Chemother. 1995; 39: 2378-2386. Ref.: https://goo.gl/NEkJb6
Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors.Antimicrob Agents Chemother. 1996; 40: 2300-2305. Ref.: https://goo.gl/mNijQx
Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene.Microbiology. 1997: 143: 405-416. Ref.: https://goo.gl/LWV1ux
White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997; 41: 1482-1487. Ref.: https://goo.gl/qJpXFb
White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of Candida albicans.Antimicrob Agents Chemother. 2002; 46: 1704-1713. Ref.: https://goo.gl/4YHXtY
Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms.J Antimicrob Chemother. 2002; 49: 973-980. Ref.: https://goo.gl/FBHFNd
Balan I, Alarco AM, Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. Journal of bacteriology. 1997: 179. 7210-7218. Ref.: https://goo.gl/gfpPgY
Franz R, Michel S, Morschhäuser J. A fourth gene from the Candida albicans CDR family of ABC transporters.Gene. 1998; 220: 91-98. Ref.: https://goo.gl/oDtXD3
Cui Z, Hirata D, Miyakawa T. Functional analysis of the promoter of the yeast SNQ2 gene encoding a multidrug resistance transporter that confers the resistance to 4-nitroquinoline N-oxide. Biosci Biotechnol Biochem. 1999; 1: 162-167. Ref.: https://goo.gl/GMGyVG
Oliveira K, Haase G, Kurtzman C, Jo J, Stender H. Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol. 2001; 11: 4138-4141. Ref.: https://goo.gl/wSd1Tk
Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole.Antimicrob Agents Chemother.2005; 2: 783-787. Ref.: https://goo.gl/J9CgcQ
Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, et al. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance.Antimicrob Agents Chemother.2005; 2: 668-679. Ref.: https://goo.gl/yHRQdL
Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C, et al. Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata.Antimicrob Agents Chemother.1998; 7: 1695-1701. Ref.: https://goo.gl/cWM5wU
Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter GeneCgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999; 11: 2753-2765. Ref.: https://goo.gl/bti7d3
Nakayama H, Izuta M, Nakayama N, Arisawa M, Aoki Y. Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice.Antimicrob Agents Chemother.2000; 9: 2411-2418. Ref.: https://goo.gl/wJERXi
Fukuoka T, Johnston DA, Winslow CA, de Groot MJ, Burt C, et al. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother. 2003; 4: 1213-1219. Ref.: https://goo.gl/6DGpJh
Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, et al. Mechanism of Fluconazole Resistance in Candida krusei. Antimicrob Agents Chemother. 1998; 10: 2645-2649. Ref.: https://goo.gl/aNv2HZ
Venkateswarlu K, Denning DW, Kelly SL. Inhibition and interaction of cytochrome P450 of Candida krusei with azole antifungal drugs.J Med Vet Mycol.1997; 1: 19-25. Ref.: https://goo.gl/n36Rwe
Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, et al. Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis.Antimicrob Agents Chemother.1998; 7: 1819-1830. Ref.: https://goo.gl/Mf42BU
Barchiesi F, Calabrese D, Sanglard D, Di Francesco LF, Caselli F, et al. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750.Antimicrob Agents Chemother.2000; 6: 1578-1584. Ref.: https://goo.gl/dpRzv1
Katiyar SK, Edlind TD. Identification and expression of multidrug resistancerelated ABC transporter genes in Candida krusei. Med Mycol. 2001; 1: 109-116. Ref.: https://goo.gl/fsrs5z
Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate.Fungal Genet Biol.2002; 3: 199-206. Ref.: https://goo.gl/Lt1m6A
Tekaia F, Latgé JP. Aspergillus fumigatus: saprophyte or pathogen?. Current opinion in Microbiology.2005; 4: 385-392. Ref.: https://goo.gl/rrDhR1
Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus.PLoS Pathog.2007; 3: 24. Ref.: https://goo.gl/wk5Asm
Andrade AC, Del Sorbo G, Van Nistelrooy JG, De Waard MA. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology.2000; 8: 1987-1997. Ref.: https://goo.gl/9KKDbR
Andrade AC, Van Nistelrooy JGM, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production.Mol Gen Genet.2000; 6: 966-977. Ref.: https://goo.gl/SiYTHx
Angermayr K, Parson W, Stöffler G, Haas H. Expression of atrC-encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans-is sensitive to cycloheximide.Biochim Biophys Acta. 1999; 2: 304-310. Ref.: https://goo.gl/omCCgD
Del Sorbo G, Andrade AC, Van Nistelrooy JGM, Van Kan JAL, Balzi E, et al. Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet. 1997; 4: 417-426. Ref.: https://goo.gl/L8y1jg
Posteraro B, Sanguinetti M, Sanglard D, La Sorda M, Boccia S, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter‐encoding gene, CnAFR1, involved in the resistance to fluconazole.Mol Microbiol.2003; 2: 357-371. Ref.: https://goo.gl/XtZ598
Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans.Infect Immun.2006; 2: 1352-1359. Ref.: https://goo.gl/VJYGGv
Thornewell SJ, Peery RB, Skatrud PL. Cloning and characterization of CneMDR1: a Cryptococcus neoformans gene encoding a protein related to multidrug resistance proteins.Gene.1997; 1: 21-29. Ref.: https://goo.gl/qsedCC
Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG, Kelly SL. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans.Antimicrob Agents Chemother.1997; 4: 748-751. Ref.: https://goo.gl/PnUwMR
Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species.FEMS Yeast Res.2006; 3: 345-355. Ref.: https://goo.gl/sbwmT6
Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, et al. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell. 2007; 7: 1150-1165. Ref.: https://goo.gl/Ts2gMZ
Pasrija R, Banerjee D, Prasad R. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport.Eukaryot Cell. 2007; 3: 443-453. Ref.: https://goo.gl/TfvHHj
Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole.Microbiology.2000; 11: 2743-2754. Ref.: https://goo.gl/7rQfQY